A Uniform Version of Jarník's Theorem
نویسندگان
چکیده
Later on in [2], Grekos refined the previous results, in some cases, by introducing the infimum of the radii of curvature r(Γ ) of the curve. He succeeded in showing an upper bound of the shape N(Γ ) l(Γ )r(Γ )−1/3 and conversely constructed a family of curves Γ0 with N(Γ0) l(Γ0)r(Γ0)−1/3. Naturally, Grekos’ results suppose that the curve has at least C2-regularity. In fact, this is the maximal regularity one can have for a “uniform” bound as good as (1), because of Swinnerton-Dyer’s results in [8] showing that if Γ is C3, one has
منابع مشابه
Another proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملFixed points for E-asymptotic contractions and Boyd-Wong type E-contractions in uniform spaces
In this paper we discuss on the fixed points of asymptotic contractions and Boyd-Wong type contractions in uniform spaces equipped with an E-distance. A new version ofKirk's fixed point theorem is given for asymptotic contractions and Boyd-Wong type contractions is investigated in uniform spaces.
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملA FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کامل